
Selective Recovery From Failures In A Task

Parallel Programming Model

James Dinan, Arjun Singri, P. Sadayappan

Dept. Computer Science and Engineering

The Ohio State University

dinan,singri,saday@cse.ohio-state.edu

Sriram Krishnamoorthy

Comp. Sciences and Mathematics Division

Pacific Northwest National Laboratory

sriram@pnl.gov

Abstract—We present a fault tolerant task pool execution envi-
ronment that is capable of performing fine-grain selective restart
using a lightweight, distributed task completion tracking mecha-
nism. Compared with conventional checkpoint/restart techniques,
this system offers a recovery penalty that is proportional to the
degree of failure rather than the system size. We evaluate this
system using the Self Consistent Field (SCF) kernel which forms
an important component in ab initio methods for computational
chemistry. Experimental results indicate that fault tolerant task
pools are robust in the presence of an arbitrary number of
failures and that they offer low overhead in the absence of faults.

Keywords-Parallel processing, fault tolerance, task parallelism,
Global Arrays, PGAS, selective recovery

I. INTRODUCTION

Leadership class applications continue to pursue more so-

phisticated scientific and engineering simulations, demand-

ing higher performance. This performance is often achieved

through larger, more complex computer systems. Unfortu-

nately, the Mean Time Between Failures (MTBF) for such

systems decreases as systems grow in size and complexity.

Thus, especially for long-running computations, job failures

due to hardware faults are becoming a more frequent problem.

Conventional methods for handling faults involve writing

periodic checkpoints to disk either at the application level

or at the operating system process level. Upon failure, the

computation can be resumed from the most recent checkpoint.

Unfortunately, the overhead of taking checkpoints can be large

due to the high volume of I/O generated and it grows with

problem and system size.

Task parallelism is a popular parallel programming model

that relaxes the process centric model for parallel computing

by expressing the computation as a set of tasks that can be

executed concurrently. This technique has been successfully

used in many applications to perform automatic scheduling

and load balancing of the workload to improve performance

[1].

The layer of virtualization introduced by task parallelism

between the units of work and the underlying hardware

resources also offers unique opportunities for fault tolerance.

In this work we extend Scioto [2], a scalable task parallel

This work was supported in part by the U.S. Department of Energy (DOE)
through grants DE-FC02-06ER25755 and DE-FG02-08ER25850 and by the
Ohio Supercomputer Center through an allocation of computing time.

programming model that interoperates with the Global Arrays

(GA) [3] Partitioned Global Address Space (PGAS) toolkit.

Our system performs dynamic, fine-grain tracking of task

execution progress and uses this information to enable selec-

tive restart when recovering from failures that occur during

task parallel regions of a program. This technique improves

on conventional checkpoint/restart techniques by incurring a

performance penalty for recovery that is proportional to the

degree of failure rather than the full system size. In addition,

the system can survive an arbitrary number of failures and

the cost for maintaining recovery information is low and in-

memory.

In Section II we provide an overview of the task parallel

programming model, failure model and fault tolerance frame-

work. In Section III we present a metadata scheme for fine-

grain task completion tracking. In Section IV we present the

fault tolerant task execution algorithm and in Section VI we

evaluate our system using the Self Consistent Field kernel from

the computational chemistry domain.

II. OVERVIEW

We extend the Scioto task parallel programming model [2]

with fault tolerance. In this initial exploration, we place several

restriction on the full task parallel programming model to

better focus on core fault tolerance issues. This restricted

programming model is sufficient to support a number of

important computational chemistry applications and will be

relaxed in future work.

A. Global Arrays

Scioto tasks operate on data stored in the global address

space provided by Global Arrays (GA) [3]. GA is a Partitioned

Global Address Space (PGAS) parallel programming model

that provides support for distributed shared multidimensional

arrays on distributed memory systems. In the GA model, array

data is partitioned into patches that are distributed across all

nodes in the computation and are remotely accessible through

one-sided operations.

B. Task Parallel Programming Model

The task parallel programming model provides a globally

accessible, but potentially distributed, pool of available tasks

that the programmer can add new tasks into and remove

tasks from for execution. In general, the job of selecting

which task should be extracted by a particular processor is

performed by the runtime system. This system is permitted

to move tasks around in order to satisfy multiple criteria

including load balance and locality. A popular and highly

scalable load balancing strategy used by many task pools is

work stealing [1].

In this work, we restrict the full task pool model by

separating the operations of populating the task pool with work

and processing the tasks in the pool into distinct phases. In

particular, we do not permit tasks to add new sub-tasks into

the pool. This restriction allows us to focus on techniques

for maintaining consistent data produced by tasks. In future

work, we plan to investigate how these techniques for data

consistency can also be applied to sub-tasks that are generated

as task outputs.

We consider a task model where all input and output data

is stored in global arrays. We require that tasks specify their

inputs and outputs up front so that they can be managed by the

fault tolerant runtime system. In addition, all input data must

be read-only and all output data must be write-only. At present

we focus on an output mode where tasks accumulate results

into an output array using GA atomic accumulate operations.

This model is sufficient for a broad class of iterative solvers

and enables the system to track output completion of tasks in

order to detect corruption and incompleteness due to failure.

C. Failure Model

In this work we focus on node failures and assume a pool

of spare nodes that is available to the runtime system. These

nodes can be used to replace failed nodes, keeping the total

number of nodes in the computation fixed. In addition, we

assume a fail-stop mode of failure where failed nodes crash

and exit the computation. When a failure occurs, this results

in the loss of a memory domain in global address space or, at

the GA level, a patch of one or more global arrays.

D. Fault Tolerance Framework

Our fault tolerant task pool system assumes a fault tolerant

runtime stack. It requires fault tolerance from Global Arrays

and GA’s communication layer, ARMCI, in order to support

respawning failed nodes and re-establishing one-sided com-

munication. In addition, a fault tolerant process management

system is needed that can detect failures, respawn failed

processes and inform the programming model that a failure

has occurred. These systems are currently under development

but not yet complete enough to evaluate our system. Thus,

in this evaluation we rely on simulated faults as described in

Section VI-B.

Fault tolerant task pools are also targeted at supporting

fine-grain restart for sections of code that can be expressed

using task pools. This system works in collaboration with

existing coarse-grain checkpoint/restart techniques that are

used to protect non- task parallel code sections. We use

such a checkpoint/restart system to take a checkpoint prior

to entering a task pool. When a failure occurs within the task

parallel region, only the failed process’ state is restored from

checkpoint and it re-connects with the currently executing task

pool.

III. TRACKING TASK EXECUTION

When recovering from a failure, we wish to scan the set of

tasks to determine which tasks have completed and which tasks

are incomplete either because they did not execute fully or

because some or all of the data they produced was lost. Tasks

are permitted to produce outputs to regions of global arrays

that span multiple memory domains. Thus, it is possible for a

task that initially executed successfully to become partially or

fully incomplete due to data loss from a failure.

In order to successfully detect this situation, we maintain

a completion marker for every memory domain that a task

writes to. This information makes it possible to detect partially

complete tasks and reduce the number of cascading failures

due to data corruption. Using the information on which patches

of the global address space have been lost, tasks can be re-

executed and re-write (i.e. atomic accumulate) outputs only to

incomplete or recovered memory domains.

A. Distributed Task Execution Metadata

Given a set of tasks T = {t1, ..., tM}, a task Ti produces

outputs to a set of memory domains, Oi. A task can produce at

most N outputs, where N is the number of memory domains.

Thus, we can organize metadata to track the completion of

these outputs by forming M, a M×N matrix where the tasks

ids are the rows indices of the matrix and, for task Ti, Mi,j

indicates the state of task i with respect to memory domain j.
Each Mi,j may contain one of the following values that

indicates the state of task Ti with respect to memory domain

j: ⊥, started, completed. The initial value of all entries

is Mi,j =⊥, which indicates that task i has not produced

an output to domain j. Started indicates that an update

has been started and completed indicates that the previously

started update has completed. During recovery, the system

must ensure:

∀Ti ∈ T, ∀j ∈ Oi Mi,j = completed

∀Ti ∈ T, ∀j /∈ Oi Mi,j =⊥

When a value of Mi,j = started is seen during recovery,

this indicates that a failure occurred while task i was updating
domain j and that domain j has become corrupted as a result

of this failure. Thus, domain j must be restored from the

checkpoint taken at the start of the task parallel region and

row j of M must be reset to ⊥ to avoid erroneous results.

When Mi,j =⊥ and j ∈ Oi, task j has not completed with

respect to output j and should be scheduled to execution to

produce this output.

B. Fault Resistant Metadata Storage

In order to avoid loss of important metadata when failure

occurs, the metadata matrix M is distributed across memory

domains where domain j stores the data in column j of

M. Thus, only the metadata corresponding to data stored on

domain j is stored on domain j. In the event that domain

j fails, all updates to j are lost and only the metadata

corresponding to j’s lost updates is lost. This co-location of

metadata with the information that it tracks ensures that, at any

given time, the state of all correct nodes is fully described by

the available metadata.

IV. FAULT TOLERANT TASK EXECUTION

In Algorithm 1 we present the fault tolerant task execution

algorithm. This algorithm ensures all tasks in a task pool

execute successfully and that they produce a consistent result.

We divide this algorithm into three parts, covered in detail in

the following sections: (IV-A) task pool execution, (IV-B) data

corruption detection, and (IV-C) completeness detection. At a

high level, this algorithm proceeds by executing all unfinished

tasks and checking to determine if a failure has occurred.

If it has, it uses the metadata to detect data corruption and

incomplete tasks. All incomplete tasks are then re-entered into

the task pool and processing repeats until execution succeeds

with no failures.

Algorithm 1 Fault tolerant task pool execution algorithm.

let: me be this process’ rank
let: nproc be the total number of processes
failed← false
TP ← T
CP ← checkpoint()
repeat

TP.process() // Execute all tasks in the task pool
failed← detect failure()
if failed = true then

TP.scan() // Detect corruption due to failures
// Add all incomplete tasks back to task pool
TP.check completion()

end if
until failed = false

A. Task Pool Processing

Executing all of the tasks, or processing, a task pool requires

performing a series of actions defined by each task object. In

our task model, we require that all tasks in the task pool can be

executed concurrently and prohibit tasks from producing sub-

tasks. The algorithm for processing the task pool is given in

Algorithm 2. This algorithm fetches the next available task

from the task pool and executes it. When no more tasks

are available, all processes line up at a barrier to wait for

completion of all tasks before proceeding. If the underlying

runtime system requires collective recovery, it can be triggered

during this collective step.

We break down task execution into three steps: fetching task

inputs, performing task execution, and writing task outputs.

During execution, a task is not permitted to produce any

outputs into the global address space. Instead, this is handled

by the runtime system to allow for additional bookkeeping

needed to detect data corruption if a failure occurs during the

write operation. In our model, task outputs are specified up

front by the user and metadata is used to determine which

of these outputs need to be written (i.e. accumulated) to

avoid producing an incorrect result. In order to avoid extra

communication, this information is generally encoded into the

task descriptor rather than gathering potentially distributed

metadata in-line.

Algorithm 2 TP.process: Execute all tasks in a task pool

while ti ← TP.next() do
t.fetch inputs()
t.execute()
for all j ∈ Oi do
if Mi,j =⊥ then

Mi,j ← started
contribute(j)
Mi,j ← completed

end if
end for

end while
barrier()

B. Corruption Detection

After the task pool has been processed we check to deter-

mine if a failure has occurred. If one has, we must check to

determine if it occurred during a write operation resulting in

an incomplete write and data corruption. This requires a scan

of local metadata to detect any entries in the started state,

indicating that they were started but not completed. If such

an entry exists, this node must perform recovery by restoring

its shared data from the checkpoint taken at the start of the

task parallel region and resetting the corresponding metadata

entries. This scan is necessary because we allow read-modify-

write (i.e. accumulate) updates of shared data. If only non-

overlapping writes were allowed then this step would not be

necessary.

Algorithm 3 TP.scan: Detect data corruption due to failure
and initiate recovery.

for i = 1 . . .M do
if Mi,me = started then

recover() // Restore from CP and M∗,me ←⊥
end if

end for

C. Completeness Detection

When a failure has occurred, we perform analysis on the

metadata to determine which tasks are incomplete due to the

failure. Incomplete tasks may need to re-compute some or

all of their outputs and are added back into the task pool

for re-execution during the next round. We next describe two

algorithms to perform this step: a simple naive algorithm

and a home-based algorithm that greatly improves on the

communication efficiency of the naive approach.

1) Naive Algorithm: In Algorithm 4 we present a simple

approach to detecting incomplete tasks. In this approach, for

every task we check the metadata entries corresponding to

the elements of its output set. If one of these entries is not

completed the task is re-entered into the task pool. This can

be done in parallel for each task in the set of tasks, preserving

the property that a task can be added at most once to the task

pool.

Algorithm 4 TP.check completion (naive): Find incomplete
tasks and add to the task pool.

for all Ti ∈ T do
for j ∈ Oi do
if Mi,j 6= completed then

TP ← TP ∪ Ti

break
end if

end for
end for

2) Home-Based Algorithm: The number of communica-

tion steps required for the naive approach is proportional to

O(|T | · |Oavg|) where T is the set of tasks and Oavg is

the average number of outputs per task. The size of T is

generally much larger than the number of processors to allow

for load balancing and continues to grow with problem size.

In addition, due to data distribution of shared arrays, Oavg

also grows with system size for a given problem. This gives

a worst case communication complexity that is O(nproc2)
steps. Thus, a more scalable solution is needed.

In Algorithm 5 we present an algorithm that introduces the

notion of recovery homes in order to reduce the communica-

tion complexity of scanning the metadata. In this scheme, the

set of tasks is partitioned according to task ids (row numbers

in the metadata matrix) and each block of tasks is assigned

to a process who is the home for these tasks. The assignment

of tasks to processes is known by all processes and a hashing

function H can be used to map task ids to their recovery

homes. During recovery, each process scans its local metadata

and compiles a message for each home indicating which tasks

homed there have completed metadata entries on the scanning

node. These messages are then sent to all the homes and used

by the home to check for task completion. Thus, each process

sends one message to every other process resulting in a total

of O(nproc) communication steps.

V. DISCUSSION

The fault tolerant task pool model yields several attractive

properties which we describe in this section.

A. Tolerance of an arbitrary number of failures

The metadata tracking scheme described in Section III is ro-

bust in the presence of an arbitrary number of failures. Because

the bookkeeping information lost due to failure corresponds

only to data that is also lost, at any given time all correct

nodes contain metadata that describes the complete state of

the valid data in the computation.

B. Low performance overhead when no failures occur

The task execution algorithm presented in Section IV adds

only the overhead of maintaining the metadata to correct

Algorithm 5 TP.check completion (home-based): Find incom-
plete tasks and add to the task pool.

let: T ′ ⊆ T be the set of tasks homed on me
let: H : N 7→ rank
let: MSG be an M ×MAX OUTPUTS matrix
let: M ′ be an nproc×MAX OUTPUTS matrix
for i ∈ 1 . . .M do
if Mi,me = completed then
Append i to MSG[H(i), ∗]

end if
end for
M ′ ← All-to-All exchange of MSG
for Ti ∈ T ′ do
for j ∈ Oi do
if j ∩M ′[i] = ∅ then

TP ← TP ∪ Ti

break
end if

end for
end for

processes. This involves two sets of communication operations

per task: one to set metadata bits to started before writing

outputs and one to set them to completed when finished.

These communication operations can be overlapped with task

execution without any impact on robustness. Metadata bits

can be set to started using non-blocking communication at

the start of task execution and setting them to completed
can be overlapped with execution of the next task. In this

work we have focused on the cost of recovery and have

not yet fully explored such techniques to mitigate the over-

head of metadata maintenance. Thus, for the experiments

where no faults occurred communication is still performed

to maintain metadata. For SCF, this has only a small impact

on performance because it’s tasks are long running, however

applications with different characteristics could require more

aggressive overhead management techniques.

C. Space overhead proportional to task pool size

Conventional in-memory checkpointing techniques can also

be used for selective restart, however these techniques store

full copies of critical data and can double a program’s space

requirements. In comparison, fault tolerant task pools provide

finer-grain recovery while potentially using only a fraction of

the space. The storage overhead for fault tolerant task pools

is proportional to the size of the metadata matrix: the number

of tasks multiplied by the number of outputs per task.

D. Recovery cost proportional to degree of failure

Conventional checkpoint/restart techniques respond to fail-

ure by restarting all nodes in the computation from the

most recent checkpoint. The cost of this recovery mode is

proportional to the total system size. In comparison, fine-

grain recovery using the task pool model involves recovering

only the failed nodes and recomputing only the data lost

from those nodes. In addition, the task pool model provides

load balancing, allowing all processes help with recomputation

further accelerating this process.

E. Bounded cascading failure

Recovery is initiated on non-failed nodes to correct data

corruption due to a failure that occurred while another node

was writing to its memory domain. Because this recovery is

isolated and does not trigger recovery on other nodes, the

number of cascading failures is bounded by the maximum

number of memory domains a task is permitted to write to

concurrently: the maximum number of task outputs.

VI. EXPERIMENTAL EVALUATION

In this section we present an experimental evaluation of

our fault tolerant task pool system using the Self Consistent

Field (SCF) computation from the quantum chemistry domain.

These experiments were performed on a 650 node IBM System

1350 cluster with Infiniband interconnect. Nodes in this system

are configured with two quad-core 2.5 GHz AMD opteron

processors and 24GB of RAM.

A. Self Consistent Field Computation

The Self Consistent Field (SCF) computation is a key, com-

putationally intensive step in many computational chemistry

applications that computes the ground-state wave function for

a system of atoms. In particular, SCF forms the starting point

for most ab initio quantum chemistry simulations. In order

to evaluate our system, we have extended an existing Global

Arrays implementation of the closed-shell SCF method [4]

with support for fault tolerant task pools.

B. Fault simulation

A full fault-tolerant infrastructure for GA is currently under

development. Thus, in order to perform an early evaluation

of our fault tolerant task pool we have simulated failures in

software. This is done at the user level by restoring a node’s

patch of the global array from a checkpoint and clearing the

corresponding metadata. Worst case failures are simulated in

order to elicit the upper bound on the cost of recovery. We

define a worst case failure as a failure that occurs after the

last task has finished executing. Thus, the maximum amount

of data is lost by the failing process.

In Figure 1 we show the percent of all tasks that must be re-

executed for SCF on a 48 beryllium atom data set experiencing

a random worst-case single process failure. From this data we

observe that the number of re-executed tasks is proportional

to the number of processors via the data distribution. Due to

the amount of global arrays data per process, a low processor

count incurs a higher penalty due to failure than higher

processor counts where the same global arrays are spread

across more memory domains.

C. Performance Study

In Figures 2 and 3 we present the results from strong scaling

experiments for the SCF computation on a system of 48

beryllium atoms on up to 256 processors. In Figure 2 we show

the average execution time per iteration for the SCF kernel and

in Figure 3 we show the relative performance as the ratio of

the performance relative to the performance when no faults

occur. Each graph shows data for three schemes: a baseline

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 32 64 96 128 160 192 224 256

T
a
s
k
s
 R

e
-e

x
e
c
u
te

d
 (

%
)

Number of Processors

Worst Case Failure

Fig. 1. Penalty in tasks re-executed for a worst-case single process failure
on SCF.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 32 64 96 128 160 192 224 256

A
v
g
.
P

e
r

It
e
ra

ti
o
n
 T

im
e
 (

s
e
c
)

Number of Processors

Worst Case Naive
Worst Case Home-Based

No Faults

Fig. 2. Execution time for no faults and worst case failures using naive and
home-based recovery schemes.

scheme where no failures occur, worst case failures with naive

completeness detection, and worst case failures with the home-

based completeness detection. For schemes that experience

faults, we simulate one worst case failure per iteration of the

SCF kernel.

By looking at the execution time for the naive completeness

detection scheme, we see that the O(nproc2) cost for recovery
can quickly dominate execution time on larger processor

counts resulting in substantial slowdown. The home-based

scheme offers the best performance in the presence of failures

and closely follows the baseline performance trend. From the

slowdown data, we see that the average performance penalty

to recover from a worst-case single process failure is less

than 10% for the home-based scheme while it grows very

large for the naive scheme. In comparison, a conventional

checkpoint/restart scheme incurs a penalty of 50% slowdown

for a worst case failure because it must repeat the computation

a second time.

VII. RELATED WORK

User-directed checkpoint/restart techniques such as Berke-

ley Lab’s Checkpoint/Restart [5] and GA checkpoint/restart

[6] commit process checkpoints to disk periodically. Other

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 32 64 96 128 160 192 224 256

R
e
la

ti
v
e
 p

e
rf

o
rm

a
n
c
e

Number of Processors

No Faults
Worst Case Home-Based

Worst Case Naive

Fig. 3. SCF performance relative to the case with no faults.

process-level checkpoint/restart systems such as [7] and [8]

perform checkpointing automatically throughout the compu-

tation but must log messages to ensure consistent global

snapshots are captured. User-level checkpointing reduces the

volume of data stored by storing only critical data and regen-

erating ancillary data during recovery. Some systems, notably

NWChem [9], store a disk-resident database of intermediate

results at each stage of the computation that can be used

for restart. Fault tolerant task pools complement these coarse-

grain recovery techniques with a fine-grain selective recovery

mechanism that can be used to protect task parallel regions of

a program against faults.

Efforts are also underway to develop a fault tolerant runtime

stack, including a coordinated system-wide fault notification

and handling backplane [10] as well as fault tolerant FT-MPI

[11]. In addition to such reactive solutions, proactive fault

tolerance [12] uses pre-failure feedback to prevent process

failures via mechanisms like migration.

Cilk-NOW [13] provides fault tolerant task parallel com-

puting on a network of workstations. However, Cilk-NOW

is client-server based, focuses on functional parallelism, and

does not support a shared global address space. In comparison,

fault tolerant task pools has a fully distributed architecture and

supports a shared global address space. BOINC [14] supports

fault tolerant task parallel execution on a network of unreliable

volunteer machines which can produce erroneous results due

to failures. Thus, redundant computation must be performed

in order to verify correct results for every unit of computation.

BOINC is also client-server based and does not support a

shared global address space.

Much work has been done to develop fault tolerance for

the Linda programming model [15]. These efforts focus on

maintaining a stable, content-addressable shared tuple space

through replication and preventing tuple loss due to failure

using atomic transactions. In contrast, this work uses the

location-addressable global address space provided by GA

and does not require transactions. Updates to shared data

are performed via atomic accumulate, however failures can

interrupt these operations resulting in memory corruption;

metadata is used to identify and correct these inconsistencies.

Linda also supports task parallelism through the shared tuple

space. In contrast, FT task pools logically separates the tasks

from the application’s shared data and uses a checkpoint of the

task list to detect lost or incomplete tasks, avoiding problems

of duplication and task loss.

VIII. CONCLUSION

We have presented a new approach to fault tolerance that

leverages the task pool programming model to survive an

arbitrary number of failures. This system improves on con-

ventional techniques by offering a cost for recovery that is

proportional to the degree of failure while maintaining low

overheads. Fine-grain recoverability is achieved by tracking

individual task progress with distributed metadata. This system

was evaluated on the SCF computational chemistry kernel and

demonstrated to achieve recovery penalties of less than 10%

for worst case failures on 256 processors.

REFERENCES

[1] J. Dinan, S. Krishnamoorthy, D. B. Larkins, J. Nieplocha, and P. Sa-
dayappan, “Scalable work stealing,” in Proc. 21st Intl. Conference on
Supercomputing (SC), 2009.

[2] ——, “Scioto: A framework for global-view task parallelism,” in Proc.
of 37th Intl. Conference on Parallel Processing (ICPP), 2008.

[3] J. Nieplocha, R. J. Harrison, and R. J. Littlefield, “Global arrays: a
portable “shared-memory“ programming model for distributed memory
computers,” in Supercomputing (SC), 1994.

[4] J. L. Tilson, M. Minkoff, A. F. Wagner, R. Shepard, P. Sutton, R. J. Har-
rison, R. A. Kendall, and A. T. Wong, “High performance computational
chemistry:(ii) a scalable SCF program,” in J. Computational Chemistry,
vol. 17, 1995, pp. 124–132.

[5] J. Duell, P. Hargrove, and E. Roman, “The design and implementation
of Berkeley Lab’s linux checkpoint/restart,” Berkeley Lab, Tech. Rep.
LBNL-49659, 2002.

[6] V. Tipparaju, M. Krishnan, B. Palmer, F. Petrini, and J. Nieplocha, “To-
wards fault resilient global arrays,” in Intl. Conf. on Parallel Computing
(ParCo), 2007.

[7] Q. Gao, W. Yu, W. Huang, and D. K. Panda, “Application-transparent
checkpoint/restart for MPI programs over infiniband,” in Proc. 35th Intl.
Conf. on Parallel Processing (ICPP), 2006.

[8] N. Naksinehaboon, Y. Liu, C. B. Leangsuksun, R. Nassar, M. Paun,
and S. L. Scott, “Reliability-aware approach: An incremental check-
point/restart model in hpc environments,” in Proc. 8th Intl. Symp. on
Cluster Computing and the Grid (CCGRID), 2008.

[9] R. A. Kendall, E. Aprà, D. E. Bernholdt, E. J. Bylaska, M. Dupuis, G. I.
Fann, R. J. Harrison, J. Ju, J. A. Nichols, J. Nieplocha, T. P. Straatsma,
T. L. Windus, and A. T. Wong, “High performance computational
chemistry: An overview of NWChem a distributed parallel application,”
Computer Physics Communications, vol. 128, no. 1-2, pp. 260 – 283,
2000.

[10] R. Gupta, P. Beckman, H. Park, E. Lusk, P. Hargrove, A. Geist, D. K.
Panda, A. Lumsdaine, and J. Dongarra, “CIFTS: A coordinated infras-
tructure for fault-tolerant systems,” in Intl. Conf. on Parallel Processing
(ICPP), 2009.

[11] Z. Chen, G. E. Fagg, E. Gabriel, J. Langou, T. Angskun, G. Bosilca, and
J. Dongarra, “Fault tolerant high performance computing by a coding
approach,” in Proc. 10th Symp. on Principles and Practice of Parallel
Programming (PPoPP), 2005.

[12] G. Vallee, K. Charoenpornwattana, C. Engelmann, A. Tikotekar,
C. Leangsuksun, T. Naughton, and S. L. Scott, “A framework for
proactive fault tolerance,” in Proc. 3rd Intl. Conf. on Availability,
Reliability, and Security, 2008.

[13] R. D. Blumofe and P. A. Lisiecki, “Adaptive and reliable parallel
computing on networks of workstations,” in Proc. USENIX Annual
Technical Conference, 1997.

[14] D. P. Anderson, “BOINC: A system for public-resource computing and
storage,” in Proc. 5th IEEE/ACM Intl. Workshop on Grid Computing
(GRID). IEEE Computer Society, 2004, pp. 4–10.

[15] D. Bakken and R. Schlichting, “Supporting fault-tolerant parallel pro-
gramming in Linda,” IEEE Trans. Parallel and Distributed Systems,
vol. 6, no. 3, pp. 287 –302, Mar 1995.

	Introduction
	Overview
	Global Arrays
	Task Parallel Programming Model
	Failure Model
	Fault Tolerance Framework

	Tracking Task Execution
	Distributed Task Execution Metadata
	Fault Resistant Metadata Storage

	Fault Tolerant Task Execution
	Task Pool Processing
	Corruption Detection
	Completeness Detection
	Naive Algorithm
	Home-Based Algorithm

	Discussion
	Tolerance of an arbitrary number of failures
	Low performance overhead when no failures occur
	Space overhead proportional to task pool size
	Recovery cost proportional to degree of failure
	Bounded cascading failure

	Experimental Evaluation
	Self Consistent Field Computation
	Fault simulation
	Performance Study

	Related Work
	Conclusion
	References

